FPGAs for Innovating Digital Communication Interfaces

It’s 11th May, and we just arrived at a client’s studio at 11:45pm. I assure my colleague that we’ll get it right this time. Our job that night was to link two studios over an Ethernet connection. Simple enough despite the fact that neither of us had done it before. We had gone through the manuals over and over again, 4 different manuals in fact, that’s why I felt certain, at least 80% certain it would be possible. In the end, we achieved connecting two LAWO audio engines over a VLAN network that could send and receive digital audio channels over MADI (AES 10). More on that later. After our 5 hour stint, I couldn’t help wonder how even such an interface was achieved. In this post I cover what it takes for hardware and communications engineers to prototype, test and innovate such interfaces using FPGAs.

The Ultimate Production and Transmission Broadcast Facility

Media broadcast is grossly underdeveloped in Kenya. Even with the seemingly sophistication of media broadcast in Europe and America, the Kenyan media experience is quite poor. This is due to the limited competition incumbents face that new players must aggressively work against to get a piece of the cake. Setting up a TV/radio production and transmission facility may seem like a daunting task but worry no more. This post talks about bringing together a cost effective, space efficient and future proofed broadcast facility that may be just what you need to set yourself up! Specifically, it outlines the general workflow of the entire system and the hardware and software that can be used for smooth operation.